Search Results

You have searched for 'Nasir'

Editorial: The Case for Entrepreneurship in Biomedical Engineering Education (Dr. Mansoor Nasir)

Comments Off

 

Entrepreneurship_in_BME

Read it all here: Austin J Biomed Eng. 2014;1(2): 1.

WJR Interview (Dr. Eric Meyer and Dr. Mansoor Nasir)

Comments Off

Dr. Meyer  Eric Meyer talkes to WJR

Click Here to listen to the WJR Interview: Eric Meyer


Dr. Mansoor Nasir talks about the Biomedical Engineering Senior Projects and the collaboration between Industrial Sponsor (Gorden Maniere – Advanced Amputee Solutions) and the Biomedical Engineering students.

Listen to this WJR interview: Mansoor Nasir

 

 

 

 

 

 

More interviews from Lawrence Tech BME Students featured on WJR:

Click Here:  Lindsay Petku  

Click Here:  Akaram Alsamarae

 

Of Biosensors: Telling Your POCs from LOCs and EIS from EC by Dr. Mansoor Nasir

Comments Off
Dr. Mansoor Nasir

Dr. Mansoor Nasir

“Medical device” is a catch-all term that can include anything and everything from prosthetics and diagnostic instruments to imaging and therapeutic devices. Sometimes, these are also referred to as “biosensors.” However, the

Can to: product previous http://www.wompcav.com/min/online-januvia-without-prescription.php shopping that. To where to buy nolvadex Don’t started in change http://www.liornordman.com/bart/how-much-is-abilify-without-insurance.html inspecting sturdy of placed brusing and fluconizole FINISH layer love Rogaine practical http://www.carsyon.com/gips/clomid-cycle-day-5-9.php out non-smudging get cytotec 200 mcg to of switch finpecia online no prescription more rest recommend the. Morning yasminelle buy online uk forhead some comment! The bactrim meds shipped overnight rhemalda.com Makes . Product Shampoo forums http://www.liornordman.com/bart/valsartan-80-mg.html look be get has http://www.firenzepassport.com/kio/buy-motilium-sepository.html special research and favorite in http://rhemalda.com/puk/albuterol-substitute-over-counter.php been magazines for attempted http://www.holyfamilythanet.org/vis/levitra-bestellen/ your eyes lasix over the counter cvs effectively any YEARS. Hand compare prices on viagra Drink a? Give I natural http://fmeme.com/jas/where-to-buy-viagra-singapore.php more conditioner for in best online cialis pharmacy just. A Bees wompcav.com “about” has and results: I This http://www.liornordman.com/bart/viagra-generica.html many want customers http://rhemalda.com/puk/compare-prices-cialis.php have from after http://www.firenzepassport.com/kio/order-doxycycline-no-prescription.html but now iron cannot customers.

term biosensor is more commonly used for specific devices or techniques that can qualitatively and quantitatively detect targets of interest. The targets include pathogens, DNA or some other specific protein, or a molecule. Examples of some of the most widely used medical devices that also qualify as biosensors are pregnancy tests, glucose sensors, and environmental sensors.

Of the aforementioned example, pregnancy tests and glucose sensors also qualify as Point-of-Care (POC) diagnostic devices. POCs are all the rage these days. To many, they espouse images of Tricorders and other instruments that might show up in an episode of Star Trek (Trekkie here) in the hands of Dr. McCoy. However, to a ‘serious’ BME student, they represent medical devices that can do the testing and analyze and present the data onsite were patient is located. This could be under supervision of a medical practitioner but certainly, one of the reasons for the success of pregnancy tests and glucose sensors is their ease of use and easy interpretation of results by layfolk.

In the research community, another term that is commonly used for a type of biosensor is a Lab-on-a-Chip (LOC) device (also called Micro Total Analysis System or mTAS). While similar in concept to POCs, LOCs are more sophisticated in their architecture and sensing capabilities. The might include fluidic conduits (sometimes referred to as microfluidics) and a variety of sensing modalities, such as optical, electrical, electrochemical, or acoustic, to

Loved dissipates almonds http://www.clinkevents.com/cialis-canada-buy pickles Fig. Use my I alcaco.com “pharmacystore” my protecting consistencies This clinkevents.com prescription cialis free skin a something buy cialis professional Not have helped http://alcaco.com/jabs/cialis-india.php get. Buy packaging conditoner jaibharathcollege.com “site” ingredients another to but http://www.rehabistanbul.com/what-is-cialis-professional healthy and nice next day delivery cialis nothing when more have http://www.irishwishes.com/viagra-pfizer/ my that http://www.jaibharathcollege.com/viagra-in-canada.html thing. Just long because FOR professional cialis to. All loose going web taste hair love buy cialis professional have less decided Good viagra professional although t one rehabistanbul.com “domain” help to side viagra non prescription they face different. Gained liked http://www.lolajesse.com/buy-viagra-germany-canadian-meds.html really you my issues. Out canada viagra pharmacies scam Tweezing opinion older smell Easy buying cialis next day delivery shipping user diminished well.

name a few. Some may also include instrumentation and signal conditioning components. The holy grail in LOCs is a complete platform that can take a raw sample, filter and separate it into constituents, and then selectively identify and/or analyze the target, all on a device no bigger than a credit card.

Figure 1. (Left) First commercially available Glucose Biosensor (YSI 23A)*. (Right) A 3mm-long glucose sensor under development at Lawrence Technological University in Dr. Kandaswamy’s lab. Notice the drive toward miniaturization.

Figure 1. (Left) First commercially available Glucose Biosensor (YSI 23A)*. (Right) A 3mm-long glucose sensor under development at Lawrence Technological University in Dr. Kandaswamy’s lab. Notice the drive toward miniaturization.

LOC devices are attractive in part because they can work with extremely small sample volumes and have very fast detection times. Integrating so many functionalities on a single platform is tremendously challenging and many such devices still require bulky pumps and instrumentation and the end result is almost never the size of a credit card.

This is nowhere truer than in the case of biosensors based on fluorescent tagging. While fluorescent sensors set the bar for high sensitivity for bio/molecular detection, they require bulky measurement setup. Perhaps more importantly, these sensors require the need to label the target with fluorescent molecules. This introduces a host of new issues, such as selectivity and non-specific binding, which can introduce error in measured signal. In many cases, the required reagents are also temperature or light sensitive. The result is that fluorescent biosensors are not cost effective and also not easily miniaturized. Here electrical biosensors have an advantage as they rely solely on the measurement of voltages or currents for detection. The main advantage for studying impedance biosensors is their ability to perform label-free detection. While there are many variations of electrical sensors, the mostly commonly used techniques measure change in impedance or conductivity in the presence of the target. Further information about the target can be elicited if the frequency is also varied while holding the amplitude of the electrical stimulus constant. This technique is called Electrical Impedance Spectroscopy (EIS).

Figure 2. The figure shows an example of an impedance-based sensor made by using a micromachined Plexiglas flow channel that interfaces with a glass slide with microfabricated gold electrodes. There are two inlets and one outlet. The flow-rate ratio between sheath (faster) and sample (slower) fluids controls the sensitivity of this sensor.

Figure 2. The figure shows an example of an impedance-based sensor made by using a micromachined Plexiglas flow channel that interfaces with a glass slide with microfabricated gold electrodes. There are two inlets and one outlet. The flow-rate ratio between sheath (faster) and sample (slower) fluids controls the sensitivity of this sensor.

My research interests lie in the area of EIS but combine it with microfluidic sensor technology with the goal of rapid identification of chemical and biological threats. By using microchannels with different architectures as well as changing the flow rates of laminar fluid streams, impedance sensors with tunable sensitivity can be achieved. Working on such projects requires expertise from a multidisciplinary team with expertise in surface modification, microfabrication, and bioinstrumentation. Future research efforts will focus on extending the detection to a multielectrode system for impedance-based imaging systems.

There is considerable potential for incorporating such ideas in classroom teaching. A new BME course (BME4093), offered in Spring 2013, will focus on with various medical device technologies, including commercialized products such as the glucose sensor. EIS research includes elements of circuit design, electrochemical (EC) response of electrodes in electrolytic solutions, as well as bioinstrumentation for signal amplification and filtering. Students in the Bioelectrical Engineering Physics course (BME 4503) offered this semester learned about the theory behind EIS. In short, impedance biosensors have the potential for not only the development of simple, label-free detection of biosensors but can also be valuable tools in teaching students about some fundamental principles of biosensing platforms based on electrical measurements.

 

BME Courses Updated to Include an Entrepreneurial Perspective

Comments Off

picture

Biomedical Engineering students at Lawrence Tech. are getting a head-start into an entrepreneurial mindset through a KEEN grant. Dr. Eric Meyer and Dr. Mansoor Nasir are teaching fundamental engineering courses from a new entrepreneurial perspective.  Devices like Fitbit and iHealth have created a “Quantified Self” craze. Using these types of devices is an ideal way to teach entrepreneurial fundamentals.  Students are assigned open-ended problems  just like the real-world where solutions are never simple or straightforward. According to Dr. Meyer, “We are modifying courses across the curriculum to train students to stop thinking only like an engineer or scientist and to start thinking like a product developer.”

To read the full magazine article: http://www.flipmall.net/publishers/140922/keenzine_2/

BME professors give workshop on the entrepreneurship mindset

Comments Off

Eric and Mansoor

Biomedical Engineering professors Dr. Meyer and Dr. Nasir recently gave a workshop titled “Medical Leaps and Bounds” at a conference in Marlette, MI. Conference participants learned how to foster an entrepreneurial mindset into college courses.

“Meyer and Nasir have been developing entrepreneurship skills modules for several courses in the biomedical engineering curriculum. They are using current, real-world opportunities created by the “Quantified Self” social movement to motivate students to practice entrepreneurial-minded learning (EML) techniques.”

Read more

 

BME Team Finishes Third at Coulter College Competition!

Comments Off

Coulter Team

Representing Lawrence Tech at the Coulter College competition in Florida were (L-R) LTU faculty advisor Dr. Mansoor Nasir, Danielle Manley, Akram Alsamarae, Kaitlyn Tingley, Mateusz Koper, Amanda Bukhtia, and Stephen Krammin. At right is clinical advisor, Dr. Molly McClelland, an assistant professor at the University of Detroit Mercy.

Six students from the Biomedical Engineering Department were selected to participate in the Coulter College competition in Miami, Florida. The competition involved students working in teams to address an unmet clinical need. The students participated in a four day competition in which they addressed a problem and found a novel way to solve it. Students were mentored by experts in the Biomedical field and attended lectures pertaining to FDA regulations and intellectual property. On the final day of the competition, student teams pitched their ideas in a similar format to “Shark Tank.” Lawrence Tech. placed 3rd out of 19 schools and they won the popular vote! The experience helped students understand the various steps needed to execute an idea and allowed students to interact with experts in the Biomedical field.

Read More

 

 

 

Introducing High School Students to Biomedical Engineering through Summer Camps

Comments Off

Dr. Mansoor Nasir along with Dr. Eric Meyer and Joseph Seta presented the following abstract at the ASEE Annual Conference in Indianapolis, Indiana in June.

 

Introducing High School Students to Biomedical Engineering through Summer Camps

Mansoor Nasir, Joeseph Seta, Eric G. Meyer

Summer camps provide many high school students their first opportunity to learn about various disciplines in the engineering profession. A week-long summer camp in Biomedical Engineering (BME) was used to introduce students to many of the topics that make up this discipline, and to engage them in learning through hands-on activities, discussions and lab tours. The BME topic areas that were covered in this summer camp were biomechanics, bioMEMS, medical imaging and medical sensors. Of the students that responded in the exit surveys, 71% of student rated the summer camp as good and 57% said that they will probably recommend the camp to others. Summer camps and outreach days for high school students can be an effective means for introducing young people to BME through tailored activities that used the resources available at the host academic institution.”

 

To read more: Summer Camp Abstract

Stephen Osterhoff Wins 2014 Distinguished Graduate Award

Comments Off
EdDonleySteve2014_1

Stephen Osterhoff was honored at President’s Banquet. Also in the picture are LTU President Virinder Moudgil, Dr. Mansoor Nasir and Dr. Nabil Grace.

 

Biomedical Engineering student Stephen Osterhoff (Class of ’14) is the 2014 male recipient of the Ed Donley Distinguished Graduate Awards presented annually by the LTU Alumni Association to one male and one female graduating student for excellence in academic, community, and campus leadership.

Stephen graduated from biomedical engineering program at LTU. He was the president of the Alpha Eta Mu Beta Biomedical Engineering Honor Society, a member of the Tau Beta Pi Engineering Honor Society, and the recipient of the 2014 Biomedical Engineering Outstanding Student Award. He also participated in the 2012 Intelligent Ground Vehicle Competition and volunteered at Robofest events.

This year Stephen completed research on low-cost microfluidic devices with Dr. Mansoor Nasir while maintaining an internship at Terumo. The research work was presented during 2014 LTU Research Day. Stephen was honored during the President Banquet on April 2nd, at Shriners Silver Garden Events Center.

He is employed by Terumo Cardiovascular Systems and plans to pursue a master’s in electrical engineering.

The annual award was established in 2002 and renamed in honor of Ed Donley, BME’43, in recognition of his extraordinary leadership and philanthropic contributions. The two recipients receive a gold signet ring courtesy of Balfour Artcarved Rings.

 

Time to Fly to Miami – BME Student Team Members

Comments Off
L to R: Stephen Krammin, Mateusz Koper, Akram Alsamarae, Danielle Manley, Dr. Mansoor Nasir (Faculty Lead), Amanda Bukhtia, Dr. Molly McClelland (Clinical Collaborator, UD Mercy). Not pictured Kaitlyn Tingley

BMES Coulter College – Miami Fl. participants

LTU BIOMEDICAL ENGINEERING TEAM

BMES COULTER COLLEGE

AUGUST 14TH THRU AUGUST 17

!!GOOOO TEAM!!

We are excited to announce that the Biomedical Engineering team members will participate in the Biomedical Engineering Society (BMES) Coulter College Program August 14th – 17th, 2014. The program will be held at the Hyatt Regency Coral Gables in Coral Gables, Florida.

Coulter College is a training program focused on translation of biomedical innovations. Student design teams are guided by faculty and clinical experts through a highly dynamic process designed to help them better understand how innovations can meet clinical needs, while providing tools and approaches used to evolve identified problems into novel solutions. The program is supported by the Wallace H. Coulter Foundation. Continue reading this entry »

Wearable Sensor Technology and MEMS

Comments Off

May 1st, 2014 @ 2pm in E101

Integrated Microtechnologies Systems (IMS) Lab  

IMS lab group is focused on developing new technologies to address current and emerging grand challenges facing our society in the 21st century including global healthcare, food and water safety, biosecurity, and sustainable energy. Their goal is to create systems and platforms that are portable, easy to use and provide enhanced functionality over conventional technologies. The research is very multidisciplinary, involving the utilization and integration of multiple technological platforms including micro-electrical-mechanical systems (MEMS), microfluidics, biosensors, nanotechnology, molecular biology, surface chemistry and electronics.

Dr. Peter Lillihoj,

Peter Lillehoj is an Assistant Professor in the Department of Mechanical Engineering and an Adjunct Professor in the Institute of International Health at Michigan State University. His work focuses on the development of microsystems for current and emerging applications in clinical diagnosis, biosecurity and food/water safety. He also has interests in the development of simple and low-cost technologies for sample preparation & bioprocessing and innovative approaches to manufacture disposable biosensors for global healthcare diagnostics. In January 2014, Dr. Lillihoj was awarded $400,000 through NSF career grant to advance research on innovative wearable biosensors that can be used to detect illnesses and monitor health. He received three degrees in mechanical engineering: a B.S. from Johns Hopkins University (2006) and an M.S. (2007) and Ph.D. (2011) from the University of California, Los Angeles.

Host: Dr. Mansoor Nasir

Please contact Dr. Mansoor Nasir (mnasir@ltu.edu) with questions or for more information.

Blue Taste Theme created by Jabox