Polymer Piezoelectric Film Actuation for Microfluidic Systems

Jovan Popovich *, Joseph Mielke, James Mynderse and Mansoor Nasir*
*Department of Biomedical Engineering, Department of Mechanical Engineering

Piezoelectricity is a property of the material to produce an electric charge when mechanically strained.

Direct Effect:
- Sensing

Piezoelectric materials also exhibit mechanical strain when an electric charge is applied.

Reverse Effect:
- Actuation
 - This effect is heightened by poling the material to align the internal electric dipole.

Poling:

Common piezoelectric materials:
- Piezoceramics (PZT)
- Natural and Synthetic Crystals
- Polymers
- Bones and Tendons

Polyvinylidene Fluoride (PVdF)

- Cheap, flexible and biocompatible polymer
- Can be cast into pellets and thin films
- Can be poled to exhibit piezoelectric properties

References
- Piezo film Sensors - MSI Technical Manual

The authors would like to thank the Lawrence Tech seed grant program for funding for this project.

Results
- PVdF responds instantaneously to dynamic loading, but will not give proper, permanent output for static loads
- PVdF response is very similar and in phase with that of the strain gauges